Diferenças entre edições de "Laplaciano"
 (Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...")  | 
				|||
| (Há 2 revisões intermédias de 2 utilizadores que não estão a ser apresentadas) | |||
| Linha 4: | Linha 4: | ||
*CONTEXTO : Primeiro ciclo universitário  | *CONTEXTO : Primeiro ciclo universitário  | ||
*AREA: Matemática  | *AREA: Matemática  | ||
| − | *DISCIPLINA: Calculo   | + | *DISCIPLINA: Calculo Diferencial e Integral 2  | 
*ANO: 1  | *ANO: 1  | ||
*LINGUA: pt  | *LINGUA: pt  | ||
| − | *AUTOR:   | + | *AUTOR: Ana Moura Santos e Miguel Dziergwa  | 
| − | *MATERIA PRINCIPAL:    | + | *MATERIA PRINCIPAL: Campos gradientes e potenciais escalares  | 
| − | *DESCRICAO:    | + | *DESCRICAO: Cálculo de Laplaciano vetorial  | 
| − | *DIFICULDADE:   | + | *DIFICULDADE: ***  | 
*TEMPO MEDIO DE RESOLUCAO: 15 mn  | *TEMPO MEDIO DE RESOLUCAO: 15 mn  | ||
*TEMPO MAXIMO DE RESOLUCAO: 30 mn  | *TEMPO MAXIMO DE RESOLUCAO: 30 mn  | ||
| − | *PALAVRAS CHAVE:    | + | *PALAVRAS CHAVE: campo vetorial, funções coordenadas,  laplaciano vetorial  | 
</div>  | </div>  | ||
</div>  | </div>  | ||
| − | Seja \(F: \mathbb{R^3} \to \mathbb{R^3}\) uma função de classe \(C^2\) tal que \(\text{rot}\pmb{\text{F}}=\left(\begin{array}{c}0\\-\text{z}\\-\text{e}^{\text{x}}\\\end{array}\right)\),\(\text{F}_2=\text{y}^2\) e \(F_3\) não depende de y. Então o Laplaciano de \(F\) é  | + | Seja \(F: \mathbb{R^3} \to \mathbb{R^3}\) uma função de classe \(C^2\) tal que a função coordenada \(\text{rot}\pmb{\text{F}}=\left(\begin{array}{c}0\\-\text{z}\\-\text{e}^{\text{x}}\\\end{array}\right)\),\(\text{F}_2=\text{y}^2\) e a função coordenada \(F_3\) não depende de y. Então o Laplaciano de \(F\):  | 
| + | |||
| + | A) é dado por \(\left(\begin{array}{c}-\frac{2\text{x}^2-2}{\left(\text{x}^2+1\right)^2}\\0\\0\\\end{array}\right)\)  | ||
| + | |||
| + | B) é dado por \(\left(\begin{array}{c}0\\2\\0\\\end{array}\right)\)  | ||
| + | |||
| + | C) é dado por \(\left(\begin{array}{c}\text{y}\text{e}^{\text{x}}\\2\\0\\\end{array}\right)\)  | ||
| + | |||
| + | D) não pode ser determinado com os dados apresentados  | ||
| + | |||
| + | E) Nenhuma das anteriores  | ||
Para obter o zip que contém as instâncias deste exercício clique aqui(Laplaciano)  | Para obter o zip que contém as instâncias deste exercício clique aqui(Laplaciano)  | ||
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt  | Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt  | ||
Edição atual desde as 16h47min de 26 de março de 2018
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Calculo Diferencial e Integral 2
 - ANO: 1
 - LINGUA: pt
 - AUTOR: Ana Moura Santos e Miguel Dziergwa
 - MATERIA PRINCIPAL: Campos gradientes e potenciais escalares
 - DESCRICAO: Cálculo de Laplaciano vetorial
 - DIFICULDADE: ***
 - TEMPO MEDIO DE RESOLUCAO: 15 mn
 - TEMPO MAXIMO DE RESOLUCAO: 30 mn
 - PALAVRAS CHAVE: campo vetorial, funções coordenadas, laplaciano vetorial
 
Seja \(F: \mathbb{R^3} \to \mathbb{R^3}\) uma função de classe \(C^2\) tal que a função coordenada \(\text{rot}\pmb{\text{F}}=\left(\begin{array}{c}0\\-\text{z}\\-\text{e}^{\text{x}}\\\end{array}\right)\),\(\text{F}_2=\text{y}^2\) e a função coordenada \(F_3\) não depende de y. Então o Laplaciano de \(F\):
A) é dado por \(\left(\begin{array}{c}-\frac{2\text{x}^2-2}{\left(\text{x}^2+1\right)^2}\\0\\0\\\end{array}\right)\)
B) é dado por \(\left(\begin{array}{c}0\\2\\0\\\end{array}\right)\)
C) é dado por \(\left(\begin{array}{c}\text{y}\text{e}^{\text{x}}\\2\\0\\\end{array}\right)\)
D) não pode ser determinado com os dados apresentados
E) Nenhuma das anteriores
Para obter o zip que contém as instâncias deste exercício clique aqui(Laplaciano)
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt