Diferenças entre edições de "Raios de convergência de séries de potências"
		
		
		
		
		
		Saltar para a navegação
		Saltar para a pesquisa
		
				
		
		
	
| Linha 17: | Linha 17: | ||
</div>  | </div>  | ||
| − | Sabendo que a série de potências complexas \( \displaystyle \sum_{  | + | Sabendo que a série de potências complexas \( \displaystyle \sum_{n=0}^{+\infty} a_n (z-z_0)^{2n} \) tem raio de convergência \( r \), com \( r \neq 0 \), podemos garantir que  | 
| − | |||
| − | + | A) \( f(z) = \displaystyle \sum_{n=1}^{+\infty} a_{n^2} (z-z_0)^{n} \) tem derivada na origem.   | |
| − | A) -  | + | B) A função  \( f(z) = \displaystyle \sum_{n=0}^{+\infty} a_{2n} (z-z_0)^{n} \) é analítica na origem.   | 
| − | + | C) \( \displaystyle \sum_{n=0}^{+\infty} (-1)^n a_{n^2} (z-z_0)^{n} \) tem raio de convergência \( 0 \).  | |
| − | + | D)  \( \displaystyle \sum_{n=0}^{+\infty} (-1)^n a_{2n} (z-z_0)^{n} \) tem raio de convergência \( 2r \).  | |
| − | + | E) Nenhuma das anteriores.  | |
Revisão das 14h36min de 6 de maio de 2020
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Análise Complexa e Equações Diferenciais
 - ANO: 2
 - LINGUA: pt
 - AUTOR: Rui Miguel Saramago
 - MATERIA PRINCIPAL:
 - DESCRICAO:
 - DIFICULDADE:
 - TEMPO MEDIO DE RESOLUCAO: mn
 - TEMPO MAXIMO DE RESOLUCAO: mn
 - PALAVRAS CHAVE:
 
Sabendo que a série de potências complexas \( \displaystyle \sum_{n=0}^{+\infty} a_n (z-z_0)^{2n} \) tem raio de convergência \( r \), com \( r \neq 0 \), podemos garantir que
A) \( f(z) = \displaystyle \sum_{n=1}^{+\infty} a_{n^2} (z-z_0)^{n} \) tem derivada na origem. 
B) A função \( f(z) = \displaystyle \sum_{n=0}^{+\infty} a_{2n} (z-z_0)^{n} \) é analítica na origem.
C) \( \displaystyle \sum_{n=0}^{+\infty} (-1)^n a_{n^2} (z-z_0)^{n} \) tem raio de convergência \( 0 \).
D) \( \displaystyle \sum_{n=0}^{+\infty} (-1)^n a_{2n} (z-z_0)^{n} \) tem raio de convergência \( 2r \).
E) Nenhuma das anteriores.