Diferenças entre edições de "Roda de Bicicleta"
Saltar para a navegação
Saltar para a pesquisa
(Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA...") |
|||
Linha 19: | Linha 19: | ||
[[File:.jpg|thumb|Falta imagem.]] | [[File:.jpg|thumb|Falta imagem.]] | ||
+ | Imagine uma roda de bicicleta que rola sem deslizar sobre um plano. | ||
+ | O ponto A, o centro da bola, desloca-se com uma velocidade \(\vec{v_A}\). | ||
+ | |||
+ | * Qual a velocidade de qualquer ponto na extermidade da roda em relação ao ponto A? | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:260px"> | ||
+ | '''Respostas''' | ||
+ | <div class="mw-collapsible-content"> | ||
+ | |||
+ | \( \vec{v}' = ||\vec{v_A}|| \vec{e_{\phi}} \) | ||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | * Qual a velocidade do ponto B de contacto com o plano relativamente ao plano? | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed" style="width:260px"> | ||
+ | '''Respostas''' | ||
+ | <div class="mw-collapsible-content"> | ||
+ | |||
+ | \( \vec{v_B} = \vec{0} \) | ||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | * E a velocidade do ponto C, que é o ponto da roda oposto ao ponto de contacto com o plano? | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:260px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:260px"> | ||
Linha 25: | Linha 51: | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
− | \( v_{ | + | \( \vec{v_{C}} = 2 \vec{v_A} \) |
</div> | </div> | ||
</div> | </div> |
Revisão das 13h20min de 19 de outubro de 2015
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Física
- DISCIPLINA: Mecânica e ondas
- ANO: 1
- LINGUA: pt
- AUTOR: Ana Mourão
- MATERIA PRINCIPAL: Conservação de Momento Angular
- DESCRICAO: Roda de Bicicleta
- DIFICULDADE: *
- TEMPO MEDIO DE RESOLUCAO: 300 [s]
- TEMPO MAXIMO DE RESOLUCAO: 600 [s]
- PALAVRAS CHAVE: Rotação, roda, bicicleta, movimento, circular, velocidade, relativa
Ficheiro:.jpg
Falta imagem.
Imagine uma roda de bicicleta que rola sem deslizar sobre um plano.
O ponto A, o centro da bola, desloca-se com uma velocidade \(\vec{v_A}\).
- Qual a velocidade de qualquer ponto na extermidade da roda em relação ao ponto A?
Respostas
\( \vec{v}' = ||\vec{v_A}|| \vec{e_{\phi}} \)
- Qual a velocidade do ponto B de contacto com o plano relativamente ao plano?
Respostas
\( \vec{v_B} = \vec{0} \)
- E a velocidade do ponto C, que é o ponto da roda oposto ao ponto de contacto com o plano?
Respostas
\( \vec{v_{C}} = 2 \vec{v_A} \)