Diferenças entre edições de "Ortogonalização e normalização"
| (Há 6 edições intermédias do mesmo utilizador que não estão a ser apresentadas) | |||
| Linha 16: | Linha 16: | ||
</div>  | </div>  | ||
</div>  | </div>  | ||
| − | Considere a seguinte base de \( \mathbb{  | + | Considere a seguinte base de \( \mathbb{R}^3 \) \(\left\{\left(\begin{array}{c}-1\\-2\\-1\\\end{array}\right),\left(\begin{array}{c}-1\\1\\2\\\end{array}\right),\left(\begin{array}{c}-1\\-2\\1\\\end{array}\right)\right\}\). Diga qual dos seguintes conjuntos corresponde á ortonormalização desta base.  | 
| − | A)\(\left(\begin{array}{  | + | A)\(\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\-\sqrt{\frac{2}{3}}\\-\frac{1}{\sqrt{6}}\\\end{array}\right),\left(\begin{array}{c}-\frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}}\\\end{array}\right),\left(\begin{array}{c}\frac{1}{\sqrt{3}}\\-\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\end{array}\right)\right\}\),  | 
| − | B)\(\left(\begin{array}{  | + | B)\(\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\\frac{1}{\sqrt{6}}\\\sqrt{\frac{2}{3}}\\\end{array}\right),\left(\begin{array}{c}-\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\\0\\\end{array}\right),\left(\begin{array}{c}\frac{1}{\sqrt{3}}\\-\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\end{array}\right)\right\}\),  | 
| − | C)\(\left(\begin{array}{  | + | C)\(\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\-\sqrt{\frac{2}{3}}\\\frac{1}{\sqrt{6}}\\\end{array}\right),\left(\begin{array}{c}-\frac{1}{\sqrt{30}}\\-\sqrt{\frac{2}{15}}\\-\sqrt{\frac{5}{6}}\\\end{array}\right),\left(\begin{array}{c}-\frac{2}{\sqrt{5}}\\\frac{1}{\sqrt{5}}\\0\\\end{array}\right)\right\}\),  | 
| − | D)\(\left(\begin{array}{  | + | D)\(\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\-\sqrt{\frac{2}{3}}\\\frac{1}{\sqrt{6}}\\\end{array}\right),\left(\begin{array}{c}-\sqrt{\frac{5}{42}}\\4\sqrt{\frac{2}{105}}\\\frac{11}{\sqrt{210}}\\\end{array}\right),\left(\begin{array}{c}-\sqrt{\frac{5}{7}}\\\frac{1}{\sqrt{35}}\\-\frac{3}{\sqrt{35}}\\\end{array}\right)\right\}\)  | 
| − | Para obter o zip que contém as instâncias deste exercício clique aqui[]  | + | Para obter o zip que contém as instâncias deste exercício clique aqui[https://drive.tecnico.ulisboa.pt/download/1695923671436179/instanciasGramSchmidt.zip]  | 
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt  | Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt  | ||
Edição atual desde as 12h15min de 28 de julho de 2016
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Álgebra Linear
 - ANO: 1
 - LINGUA: pt
 - AUTOR: Equipa Álgebra Linear
 - MATERIA PRINCIPAL: Produtos internos e normas
 - DESCRICAO: Ortogo e norm em subespaço
 - DIFICULDADE: easy
 - TEMPO MEDIO DE RESOLUCAO: 10 mn
 - TEMPO MAXIMO DE RESOLUCAO: 30 mn
 - PALAVRAS CHAVE:
 
Considere a seguinte base de \( \mathbb{R}^3 \) \(\left\{\left(\begin{array}{c}-1\\-2\\-1\\\end{array}\right),\left(\begin{array}{c}-1\\1\\2\\\end{array}\right),\left(\begin{array}{c}-1\\-2\\1\\\end{array}\right)\right\}\). Diga qual dos seguintes conjuntos corresponde á ortonormalização desta base.
A)\(\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\-\sqrt{\frac{2}{3}}\\-\frac{1}{\sqrt{6}}\\\end{array}\right),\left(\begin{array}{c}-\frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}}\\\end{array}\right),\left(\begin{array}{c}\frac{1}{\sqrt{3}}\\-\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\end{array}\right)\right\}\), B)\(\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\\frac{1}{\sqrt{6}}\\\sqrt{\frac{2}{3}}\\\end{array}\right),\left(\begin{array}{c}-\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\\0\\\end{array}\right),\left(\begin{array}{c}\frac{1}{\sqrt{3}}\\-\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\end{array}\right)\right\}\), C)\(\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\-\sqrt{\frac{2}{3}}\\\frac{1}{\sqrt{6}}\\\end{array}\right),\left(\begin{array}{c}-\frac{1}{\sqrt{30}}\\-\sqrt{\frac{2}{15}}\\-\sqrt{\frac{5}{6}}\\\end{array}\right),\left(\begin{array}{c}-\frac{2}{\sqrt{5}}\\\frac{1}{\sqrt{5}}\\0\\\end{array}\right)\right\}\), D)\(\left\{\left(\begin{array}{c}-\frac{1}{\sqrt{6}}\\-\sqrt{\frac{2}{3}}\\\frac{1}{\sqrt{6}}\\\end{array}\right),\left(\begin{array}{c}-\sqrt{\frac{5}{42}}\\4\sqrt{\frac{2}{105}}\\\frac{11}{\sqrt{210}}\\\end{array}\right),\left(\begin{array}{c}-\sqrt{\frac{5}{7}}\\\frac{1}{\sqrt{35}}\\-\frac{3}{\sqrt{35}}\\\end{array}\right)\right\}\)
Para obter o zip que contém as instâncias deste exercício clique aqui[1]
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt