Diferenças entre edições de "Base ortonormal para um subespaço de \(R^3\)"
| (Há 5 edições intermédias do mesmo utilizador que não estão a ser apresentadas) | |||
| Linha 8: | Linha 8: | ||
*LINGUA: pt  | *LINGUA: pt  | ||
*AUTOR: Ana Moura Santos e Miguel Dziergwa  | *AUTOR: Ana Moura Santos e Miguel Dziergwa  | ||
| − | *MATERIA PRINCIPAL:   | + | *MATERIA PRINCIPAL: Bases ortogonais e ortogonalização de Gram-Schmidt  | 
*DESCRICAO: Base ortonormal para um subespaço de R3  | *DESCRICAO: Base ortonormal para um subespaço de R3  | ||
*DIFICULDADE: ***  | *DIFICULDADE: ***  | ||
| Linha 19: | Linha 19: | ||
A) \(\left\{\left(\begin{array}{c}\frac{1}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\\end{array}\right),\left(\begin{array}{c}-\frac{21}{\sqrt{646}}\\3\sqrt{\frac{2}{323}}\\-\frac{13}{\sqrt{646}}\\\end{array}\right)\right\}\);  | A) \(\left\{\left(\begin{array}{c}\frac{1}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\\end{array}\right),\left(\begin{array}{c}-\frac{21}{\sqrt{646}}\\3\sqrt{\frac{2}{323}}\\-\frac{13}{\sqrt{646}}\\\end{array}\right)\right\}\);  | ||
| + | |||
B) \(\left\{\left(\begin{array}{c}\frac{1}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\\end{array}\right),\left(\begin{array}{c}-\frac{3}{\sqrt{19}}\\\frac{3}{\sqrt{19}}\\\frac{1}{\sqrt{19}}\\\end{array}\right),\left(\begin{array}{c}-\frac{2}{\sqrt{17}}\\\frac{3}{\sqrt{17}}\\\frac{2}{\sqrt{17}}\\\end{array}\right)\right\}\);  | B) \(\left\{\left(\begin{array}{c}\frac{1}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\\end{array}\right),\left(\begin{array}{c}-\frac{3}{\sqrt{19}}\\\frac{3}{\sqrt{19}}\\\frac{1}{\sqrt{19}}\\\end{array}\right),\left(\begin{array}{c}-\frac{2}{\sqrt{17}}\\\frac{3}{\sqrt{17}}\\\frac{2}{\sqrt{17}}\\\end{array}\right)\right\}\);  | ||
| + | |||
C) \(\left\{\left(\begin{array}{c}\frac{1}{19}\\\frac{9}{19}\\\frac{9}{19}\\\end{array}\right),\left(\begin{array}{c}\frac{441}{646}\\\frac{18}{323}\\\frac{169}{646}\\\end{array}\right)\right\}\);  | C) \(\left\{\left(\begin{array}{c}\frac{1}{19}\\\frac{9}{19}\\\frac{9}{19}\\\end{array}\right),\left(\begin{array}{c}\frac{441}{646}\\\frac{18}{323}\\\frac{169}{646}\\\end{array}\right)\right\}\);  | ||
| + | |||
D)\(\left\{\left(\begin{array}{c}\frac{1}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\\end{array}\right),\left(\begin{array}{c}-\frac{21}{\sqrt{646}}\\3\sqrt{\frac{2}{323}}\\-\frac{13}{\sqrt{646}}\\\end{array}\right),\left(\begin{array}{c}-\frac{2}{\sqrt{17}}\\\frac{3}{\sqrt{17}}\\\frac{2}{\sqrt{17}}\\\end{array}\right)\right\}\).  | D)\(\left\{\left(\begin{array}{c}\frac{1}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\\end{array}\right),\left(\begin{array}{c}-\frac{21}{\sqrt{646}}\\3\sqrt{\frac{2}{323}}\\-\frac{13}{\sqrt{646}}\\\end{array}\right),\left(\begin{array}{c}-\frac{2}{\sqrt{17}}\\\frac{3}{\sqrt{17}}\\\frac{2}{\sqrt{17}}\\\end{array}\right)\right\}\).  | ||
| − | Para obter o zip que contém as instâncias deste exercício clique aqui[https://drive.tecnico.ulisboa.pt/  | + | Para obter o zip que contém as instâncias deste exercício clique aqui[https://drive.tecnico.ulisboa.pt/api/drive/file/851498741292123/download]  | 
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt  | Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt  | ||
Edição atual desde as 16h24min de 5 de outubro de 2017
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Álgebra Linear
 - ANO: 1
 - LINGUA: pt
 - AUTOR: Ana Moura Santos e Miguel Dziergwa
 - MATERIA PRINCIPAL: Bases ortogonais e ortogonalização de Gram-Schmidt
 - DESCRICAO: Base ortonormal para um subespaço de R3
 - DIFICULDADE: ***
 - TEMPO MEDIO DE RESOLUCAO: 15 mn
 - TEMPO MAXIMO DE RESOLUCAO: 30 mn
 - PALAVRAS CHAVE: subespaço, expansão linear, base, base ortonormal (ortonormada), ortogonalização Gram-Schimdt
 
Considere o subespaço expansão linear \(W= \mathscr{L} \)\(\left\{\left(\begin{array}{c}1\\-3\\-3\\\end{array}\right),\left(\begin{array}{c}-3\\3\\1\\\end{array}\right),\left(\begin{array}{c}-8\\12\\8\\\end{array}\right)\right\}\). Diga qual dos seguintes conjuntos é uma base ortonormal para \(W\).
A) \(\left\{\left(\begin{array}{c}\frac{1}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\\end{array}\right),\left(\begin{array}{c}-\frac{21}{\sqrt{646}}\\3\sqrt{\frac{2}{323}}\\-\frac{13}{\sqrt{646}}\\\end{array}\right)\right\}\);
B) \(\left\{\left(\begin{array}{c}\frac{1}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\\end{array}\right),\left(\begin{array}{c}-\frac{3}{\sqrt{19}}\\\frac{3}{\sqrt{19}}\\\frac{1}{\sqrt{19}}\\\end{array}\right),\left(\begin{array}{c}-\frac{2}{\sqrt{17}}\\\frac{3}{\sqrt{17}}\\\frac{2}{\sqrt{17}}\\\end{array}\right)\right\}\);
C) \(\left\{\left(\begin{array}{c}\frac{1}{19}\\\frac{9}{19}\\\frac{9}{19}\\\end{array}\right),\left(\begin{array}{c}\frac{441}{646}\\\frac{18}{323}\\\frac{169}{646}\\\end{array}\right)\right\}\);
D)\(\left\{\left(\begin{array}{c}\frac{1}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\-\frac{3}{\sqrt{19}}\\\end{array}\right),\left(\begin{array}{c}-\frac{21}{\sqrt{646}}\\3\sqrt{\frac{2}{323}}\\-\frac{13}{\sqrt{646}}\\\end{array}\right),\left(\begin{array}{c}-\frac{2}{\sqrt{17}}\\\frac{3}{\sqrt{17}}\\\frac{2}{\sqrt{17}}\\\end{array}\right)\right\}\).
Para obter o zip que contém as instâncias deste exercício clique aqui[1]
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt