Diferenças entre edições de "Conjuntos em \(R^2\)"
| (Há 3 revisões intermédias de outro utilizador que não estão a ser apresentadas) | |||
| Linha 4: | Linha 4: | ||
*CONTEXTO : Primeiro ciclo universitário  | *CONTEXTO : Primeiro ciclo universitário  | ||
*AREA: Matemática  | *AREA: Matemática  | ||
| − | *DISCIPLINA: Calculo   | + | *DISCIPLINA: Calculo Diferencial e Integral 2  | 
*ANO: 1  | *ANO: 1  | ||
*LINGUA: pt  | *LINGUA: pt  | ||
| − | *AUTOR:   | + | *AUTOR: Ana Moura Santos e Miguel Dziergwa  | 
*MATERIA PRINCIPAL: Estrutura algébrica e topológica de \(R^n\)  | *MATERIA PRINCIPAL: Estrutura algébrica e topológica de \(R^n\)  | ||
| − | *DESCRICAO:   | + | *DESCRICAO: Conjuntos em  \(R^2\)  | 
| − | *DIFICULDADE:   | + | *DIFICULDADE: **  | 
*TEMPO MEDIO DE RESOLUCAO: 15 mn  | *TEMPO MEDIO DE RESOLUCAO: 15 mn  | ||
| − | *TEMPO MAXIMO DE RESOLUCAO:   | + | *TEMPO MAXIMO DE RESOLUCAO: 20 mn  | 
*PALAVRAS CHAVE: conjunto limitado, conjunto fechado, interior, exterior, fronteira,    | *PALAVRAS CHAVE: conjunto limitado, conjunto fechado, interior, exterior, fronteira,    | ||
</div>  | </div>  | ||
| Linha 23: | Linha 23: | ||
Seleccione todas as afirmações correctas.  | Seleccione todas as afirmações correctas.  | ||
| − | A)O conjunto fronteira de A pode ser dado por \(\left\{\left(\begin{array}{c}x\\y\\\end{array}\right)\text{$\in$}\mathbb{R}^2\text{:}\left(3x^2+4y=6\land y\geq-2\right)\lor\left(y=-2\land3x^2+4y\leq6\right)\right\}\).  | + | A) O conjunto fronteira de A pode ser dado por \(\left\{\left(\begin{array}{c}x\\y\\\end{array}\right)\text{$\in$}\mathbb{R}^2\text{:}\left(3x^2+4y=6\land y\geq-2\right)\lor\left(y=-2\land3x^2+4y\leq6\right)\right\}\).  | 
| − | B)O conjunto A pode ser dado por \(\left\{\left(\begin{array}{c}x\\y\\\end{array}\right)\text{$\in$}\mathbb{R}^2\text{:}3x^2+4y>6\land y\leq-2\right\}\).  | + | B) O conjunto A pode ser dado por \(\left\{\left(\begin{array}{c}x\\y\\\end{array}\right)\text{$\in$}\mathbb{R}^2\text{:}3x^2+4y>6\land y\leq-2\right\}\).  | 
| − | C)O conjunto interior  de A pode ser dado por \(\left\{\left(\begin{array}{c}x\\y\\\end{array}\right)\text{$\in$}\mathbb{R}^2\text{:}3x^2+4y<6\land y>-2\right\}\).  | + | C) O conjunto interior  de A pode ser dado por \(\left\{\left(\begin{array}{c}x\\y\\\end{array}\right)\text{$\in$}\mathbb{R}^2\text{:}3x^2+4y<6\land y>-2\right\}\).  | 
| − | D)Nenhuma das anteriores  | + | D) Nenhuma das anteriores  | 
| − | Para obter o zip que contém as instâncias deste exercício clique aqui  | + | Para obter o zip que contém as instâncias deste exercício clique aqui[https://drive.tecnico.ulisboa.pt/api/drive/file/1695923671482839/download]  | 
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt  | Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt  | ||
Edição atual desde as 14h35min de 2 de abril de 2018
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Calculo Diferencial e Integral 2
 - ANO: 1
 - LINGUA: pt
 - AUTOR: Ana Moura Santos e Miguel Dziergwa
 - MATERIA PRINCIPAL: Estrutura algébrica e topológica de \(R^n\)
 - DESCRICAO: Conjuntos em \(R^2\)
 - DIFICULDADE: **
 - TEMPO MEDIO DE RESOLUCAO: 15 mn
 - TEMPO MAXIMO DE RESOLUCAO: 20 mn
 - PALAVRAS CHAVE: conjunto limitado, conjunto fechado, interior, exterior, fronteira,
 
Seja \(\text{A$\subset$}\mathbb{R}^2\) um conjunto limitado e fechado do plano com a seguinte representação geométrica:
Seleccione todas as afirmações correctas.
A) O conjunto fronteira de A pode ser dado por \(\left\{\left(\begin{array}{c}x\\y\\\end{array}\right)\text{$\in$}\mathbb{R}^2\text{:}\left(3x^2+4y=6\land y\geq-2\right)\lor\left(y=-2\land3x^2+4y\leq6\right)\right\}\).
B) O conjunto A pode ser dado por \(\left\{\left(\begin{array}{c}x\\y\\\end{array}\right)\text{$\in$}\mathbb{R}^2\text{:}3x^2+4y>6\land y\leq-2\right\}\).
C) O conjunto interior de A pode ser dado por \(\left\{\left(\begin{array}{c}x\\y\\\end{array}\right)\text{$\in$}\mathbb{R}^2\text{:}3x^2+4y<6\land y>-2\right\}\).
D) Nenhuma das anteriores
Para obter o zip que contém as instâncias deste exercício clique aqui[1]
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt
