Diferenças entre edições de "Campos conservativos em \(R^3\)"
(Há uma revisão intermédia de outro utilizador que não está a ser apresentada) | |||
Linha 9: | Linha 9: | ||
*AUTOR: Ana Moura Santos e Miguel Dziergwa | *AUTOR: Ana Moura Santos e Miguel Dziergwa | ||
*MATERIA PRINCIPAL: Campos gradientes e potenciais escalares | *MATERIA PRINCIPAL: Campos gradientes e potenciais escalares | ||
− | *DESCRICAO: | + | *DESCRICAO: Campos conservativos em \(R^3\) |
*DIFICULDADE: ** | *DIFICULDADE: ** | ||
*TEMPO MEDIO DE RESOLUCAO: 15 mn | *TEMPO MEDIO DE RESOLUCAO: 15 mn | ||
Linha 30: | Linha 30: | ||
− | Para obter o zip que contém as instâncias deste exercício clique aqui | + | Para obter o zip que contém as instâncias deste exercício clique aqui[https://drive.tecnico.ulisboa.pt/api/drive/file/851498741309837/download] |
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt | Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt |
Edição atual desde as 09h56min de 6 de abril de 2018
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Calculo Diferencial e Integral 2
- ANO: 1
- LINGUA: pt
- AUTOR: Ana Moura Santos e Miguel Dziergwa
- MATERIA PRINCIPAL: Campos gradientes e potenciais escalares
- DESCRICAO: Campos conservativos em \(R^3\)
- DIFICULDADE: **
- TEMPO MEDIO DE RESOLUCAO: 15 mn
- TEMPO MAXIMO DE RESOLUCAO: 20 mn
- PALAVRAS CHAVE: campo vetorial, campo gradiente, gradiente de uma função escalar
Diga quais das seguintes funções podem definir um campo vetorial conservativo, i.e. um campo que é o gradiente duma dada função escalar.
A) \(\pmb{\text{F}}\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\text{=}\left(\begin{array}{c}\sqrt{\pi}\\-2y^2+2y+5\\\sqrt{\pi}\\\end{array}\right)\)
B) \(\pmb{\text{F}}\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\text{=}\left(\begin{array}{c}2e^{4x}\\-2e^{-2y}\\-5e^{2z}\\\end{array}\right)\)
C) \(\pmb{\text{F}}\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\text{=}\left(\begin{array}{c}-\cos(x+2y-2z)\\-2\cos(x+2y-2z)\\2\cos(x+2y-2z)\\\end{array}\right)\)
D) \(\pmb{\text{F}}\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\text{=}\left(\begin{array}{c}-4e^{-2x-2y+z}\\-4e^{-2x-2y+z}\\2e^{-2x-2y+z}\\\end{array}\right)\)
E) Nenhuma das anteriores
Para obter o zip que contém as instâncias deste exercício clique aqui[1]
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt