Diferenças entre edições de "Classificação de singularidades"
Saltar para a navegação
Saltar para a pesquisa
(Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...") |
|||
| (Há 2 edições intermédias do mesmo utilizador que não estão a ser apresentadas) | |||
| Linha 8: | Linha 8: | ||
*LINGUA: pt | *LINGUA: pt | ||
*AUTOR: Rui Miguel Saramago | *AUTOR: Rui Miguel Saramago | ||
| − | *MATERIA PRINCIPAL: | + | *MATERIA PRINCIPAL: Singularidades de funções complexas de variável complexa |
| − | *DESCRICAO: | + | *DESCRICAO: Classificar singularidades de funções a partir de condições dadas |
| − | *DIFICULDADE: | + | *DIFICULDADE: ** |
| − | *TEMPO MEDIO DE RESOLUCAO: mn | + | *TEMPO MEDIO DE RESOLUCAO: 10 mn |
| − | *TEMPO MAXIMO DE RESOLUCAO: mn | + | *TEMPO MAXIMO DE RESOLUCAO: 15 mn |
| − | *PALAVRAS CHAVE: | + | *PALAVRAS CHAVE: singularidade, função holomorfa, função meromorfa |
</div> | </div> | ||
</div> | </div> | ||
| + | |||
| + | |||
| + | Seja \( f \) uma função complexa de variável complexa tal que \( \frac{f}{z} \) tem uma singularidade removível em \( z_0 \neq 0\). | ||
| + | |||
| + | Então podemos garantir que: | ||
| + | |||
| + | A) \( \ z \, f \) tem uma singularidade removível em \( z_0 \neq 0\). | ||
| + | |||
| + | B) \( \ \frac{f}{z} \) tem uma singularidade removível em \( 0 \). | ||
| + | |||
| + | C) \( \ f \) tem uma singularidade essencial em \( 0 \). | ||
| + | |||
| + | D) \( \ \frac{f}{z} \) tem uma singularidade essencial em \( 0 \). | ||
| + | |||
| + | E) nenhuma. | ||
Edição atual desde as 16h27min de 7 de maio de 2020
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Análise Complexa e Equações Diferenciais
- ANO: 2
- LINGUA: pt
- AUTOR: Rui Miguel Saramago
- MATERIA PRINCIPAL: Singularidades de funções complexas de variável complexa
- DESCRICAO: Classificar singularidades de funções a partir de condições dadas
- DIFICULDADE: **
- TEMPO MEDIO DE RESOLUCAO: 10 mn
- TEMPO MAXIMO DE RESOLUCAO: 15 mn
- PALAVRAS CHAVE: singularidade, função holomorfa, função meromorfa
Seja \( f \) uma função complexa de variável complexa tal que \( \frac{f}{z} \) tem uma singularidade removível em \( z_0 \neq 0\).
Então podemos garantir que:
A) \( \ z \, f \) tem uma singularidade removível em \( z_0 \neq 0\).
B) \( \ \frac{f}{z} \) tem uma singularidade removível em \( 0 \).
C) \( \ f \) tem uma singularidade essencial em \( 0 \).
D) \( \ \frac{f}{z} \) tem uma singularidade essencial em \( 0 \).
E) nenhuma.