Diferenças entre edições de "Representação numa base dum plano de \(R^3\)"
| Linha 23: | Linha 23: | ||
D)\(\left(\begin{array}{c}-4\\17\\12\\\end{array}\right)\)  | D)\(\left(\begin{array}{c}-4\\17\\12\\\end{array}\right)\)  | ||
| − | Para obter o zip que contém as instâncias deste exercício clique aqui  | + | Para obter o zip que contém as instâncias deste exercício clique aqui(repbasePlano.nb)  | 
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt  | Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt  | ||
Revisão das 10h16min de 24 de agosto de 2016
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Álgebra Linear
 - ANO: 1
 - LINGUA: pt
 - AUTOR: Equipa Álgebra Linear
 - MATERIA PRINCIPAL: Espaços lineares e transformações lineares
 - DESCRICAO: representacao base em R3
 - DIFICULDADE: easy
 - TEMPO MEDIO DE RESOLUCAO: 15 mn
 - TEMPO MAXIMO DE RESOLUCAO: 30 mn
 - PALAVRAS CHAVE:
 
Seja \(W = \mathscr{L} (B) \),com \(B=\)\(\left\{\left(\begin{array}{c}2\\-1\\-2\\\end{array}\right),\left(\begin{array}{c}1\\-4\\-2\\\end{array}\right)\right\}\) uma base do subespaço \(W\) de \( \mathbb{R}^3 \). Se \(\overset{\to}{u_B}\)=\(\left(\begin{array}{c}0\\-4\\\end{array}\right)\) é o vector de coordenadas de \(u\) na base \(B\), o vector \(\overset{\to}{u}\) é:
A)\(\left(\begin{array}{c}-4\\16\\8\\\end{array}\right)\), B)\(\left(\begin{array}{c}0\\20\\7\\\end{array}\right)\), C)\(\left(\begin{array}{c}-4\\16\\-4\\\end{array}\right)\), D)\(\left(\begin{array}{c}-4\\17\\12\\\end{array}\right)\)
Para obter o zip que contém as instâncias deste exercício clique aqui(repbasePlano.nb)
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt