Diferenças entre edições de "Valor médio de uma função num paralelipipedo"
		
		
		
		
		
		Saltar para a navegação
		Saltar para a pesquisa
		
				
		
		
	
 (Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...")  | 
				|||
| Linha 16: | Linha 16: | ||
</div>  | </div>  | ||
</div>  | </div>  | ||
| − | + | ||
O valor médio de \(f\)\(\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\)=\(-3\cos(y)-5\sin(z)\) na região \(A=\)\(\left[\frac{5\pi}{6},\frac{3\pi}{2}\right]\times\left[-\frac{3\pi}{4},\frac{5\pi}{6}\right]\times\left[-\frac{2\pi}{3},\frac{\pi}{3}\right]\) de \( \mathbb{R^3} \) é igual a:  | O valor médio de \(f\)\(\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\)=\(-3\cos(y)-5\sin(z)\) na região \(A=\)\(\left[\frac{5\pi}{6},\frac{3\pi}{2}\right]\times\left[-\frac{3\pi}{4},\frac{5\pi}{6}\right]\times\left[-\frac{2\pi}{3},\frac{\pi}{3}\right]\) de \( \mathbb{R^3} \) é igual a:  | ||
Revisão das 13h14min de 2 de setembro de 2016
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Calculo diferencial e integral 2
 - ANO: 1
 - LINGUA: pt
 - AUTOR: Equipa Calculo diferencial e integral 2
 - MATERIA PRINCIPAL:
 - DESCRICAO:
 - DIFICULDADE: easy
 - TEMPO MEDIO DE RESOLUCAO: 15 mn
 - TEMPO MAXIMO DE RESOLUCAO: 30 mn
 - PALAVRAS CHAVE:
 
O valor médio de \(f\)\(\left(\begin{array}{c}x\\y\\z\\\end{array}\right)\)=\(-3\cos(y)-5\sin(z)\) na região \(A=\)\(\left[\frac{5\pi}{6},\frac{3\pi}{2}\right]\times\left[-\frac{3\pi}{4},\frac{5\pi}{6}\right]\times\left[-\frac{2\pi}{3},\frac{\pi}{3}\right]\) de \( \mathbb{R^3} \) é igual a:
A)\(\frac{77-18\sqrt{2}}{19\pi}\)
B)\(\frac{1}{18}\left(77-18\sqrt{2}\right)\pi^2\)
C)\(\frac{19\pi^3}{18}\)
D)\(\frac{893\pi^2}{72}\)
Para obter o zip que contém as instâncias deste exercício clique aqui(valorMedioR3)
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt