Diferenças entre edições de "Dimensão de um subespaço"
		
		
		
		
		
		Saltar para a navegação
		Saltar para a pesquisa
		
				
		
		
	
| Linha 22: | Linha 22: | ||
Admitindo que:  | Admitindo que:  | ||
| − | \( \mathbf{v_2} \notin \mathcal{L} \{ \mathbf{v_1} \}\)   | + | \( \mathbf{v_2} \notin \mathcal{L} \{ \mathbf{v_1} \};\)    | 
| − | + | \( \mathbf{v_3} + \) \(4\) \( \mathbf{v_2} + \) \(2\) \( \mathbf{v_1}=\bf {0} \);  | |
\( \mathbf{v_4} + \) \(3\) \( \mathbf{v_3} +\) \(2\)\( \mathbf{v_2} + \)\(4\)\( \mathbf{v_1}=\bf{0} \).    | \( \mathbf{v_4} + \) \(3\) \( \mathbf{v_3} +\) \(2\)\( \mathbf{v_2} + \)\(4\)\( \mathbf{v_1}=\bf{0} \).    | ||
Revisão das 23h37min de 16 de outubro de 2016
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Álgebra Linear
 - ANO: 1
 - LINGUA: pt
 - AUTOR: Equipa Álgebra Linear
 - MATERIA PRINCIPAL: Bases e dimensão
 - DESCRICAO: dadas condições sobre vetores determinar a dimensão do subespaço por eles gerado
 - DIFICULDADE: easy
 - TEMPO MEDIO DE RESOLUCAO: 15 mn
 - TEMPO MAXIMO DE RESOLUCAO: 30 mn
 - PALAVRAS CHAVE: (sub)espaço gerado, expansão linear, vetor na expansão linear, reta gerada por um vetor não-nulo, plano gerado por dois vetores não-nulos linearmente independentes, dimensão de um subespaço
 
Sejam \( \mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, \mathbf{v_4} \) vetores não nulos de um espaço vetorial e \( \mathcal{L} \{ \mathbf{v_1,v_2,v_3,v_4} \} \)o subespaço \(V\) por eles gerado. 
Admitindo que:
\( \mathbf{v_2} \notin \mathcal{L} \{ \mathbf{v_1} \};\)
\( \mathbf{v_3} + \) \(4\) \( \mathbf{v_2} + \) \(2\) \( \mathbf{v_1}=\bf {0} \);
\( \mathbf{v_4} + \) \(3\) \( \mathbf{v_3} +\) \(2\)\( \mathbf{v_2} + \)\(4\)\( \mathbf{v_1}=\bf{0} \).
Indique qual a dimensão de \(V\).
A) \(2\); B) \(3\); C) \(1\); D) \(4\).
Para obter o zip que contém as instâncias deste exercício clique aqui(dimSubespaco.nb)
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt