Diferenças entre edições de "Teorema das matrizes invertíveis e espaços matriciais"
| Linha 10: | Linha 10: | ||
*MATERIA PRINCIPAL: Espaços lineares  | *MATERIA PRINCIPAL: Espaços lineares  | ||
*DESCRICAO: TMI e espaços matriciais  | *DESCRICAO: TMI e espaços matriciais  | ||
| − | *DIFICULDADE:   | + | *DIFICULDADE: **  | 
*TEMPO MEDIO DE RESOLUCAO: 15 mn  | *TEMPO MEDIO DE RESOLUCAO: 15 mn  | ||
*TEMPO MAXIMO DE RESOLUCAO: 30 mn  | *TEMPO MAXIMO DE RESOLUCAO: 30 mn  | ||
Edição atual desde as 19h27min de 28 de março de 2018
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Álgebra Linear
 - ANO: 1
 - LINGUA: pt
 - AUTOR: Equipa Álgebra Linear
 - MATERIA PRINCIPAL: Espaços lineares
 - DESCRICAO: TMI e espaços matriciais
 - DIFICULDADE: **
 - TEMPO MEDIO DE RESOLUCAO: 15 mn
 - TEMPO MAXIMO DE RESOLUCAO: 30 mn
 - PALAVRAS CHAVE: teorema das matrizes invertíveis (TMI), matriz transposta, SEL possível e impossível, conjunto solução, bases e dimensão, espaço gerado, espaço das colunas, espaço nulo
 
Seja \( A_{n \times n} \) uma matriz quadrada e \( A^T \) a sua transposta. Indique todas as afirmações correctas.
A) a dimensão do espaço das colunas de \(\text{A}\) é igual a \(\text{n}\) sse existe um vector \(\text{b}\) de \(\mathbb{R}^n\) tal que o sistema de equações \(\text{A}\pmb{\text{x}}=\pmb{\text{b}}\) é impossível;
B) as colunas de \(\text{A}\) geram \(\mathbb{R}^n\) sse \(A^T\) não é invertível;
C) \(\text{det(}A^T\text{)$\neq$0}\) sse o sistema de equações \(\text{A}\pmb{\text{x}}=\pmb{\text{0}}\) tem infinitas soluções;
D) a dimensão do espaço das colunas de \(A^T\) é estritamente menor que \(\text{n}\) sse aplicando o método de Gauss-Jordan a \(\text{A}\), obtemos a matriz indentidade;
E) Nenhuma das anteriores
Para obter o zip que contém as instâncias deste exercício clique aqui[1]
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt