Sequência de Acções
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Álgebra Linear
 - ANO: 1
 - LINGUA: pt
 - AUTOR: Equipa Álgebra Linear
 - MATERIA PRINCIPAL:
 - DESCRICAO:
 - DIFICULDADE:
 - TEMPO MEDIO DE RESOLUCAO:
 - TEMPO MAXIMO DE RESOLUCAO: 30 mn
 - PALAVRAS CHAVE:
 
Considere a transformação linear que tomando um vector de \( \mathbb{R}^2 \) o reflete relativamente ao eixo dos \(xx\) seguidamente o roda \(\frac{2\pi}{3}\) no sentido contrário ao dos ponteiros do relógio e finalmente o reflete relativamente à recta \(y=x\). Diga qual das seguintes matrizes é a matriz canónica da transformação linear.
A)\(\left(\begin{array}{cc}\frac{\sqrt{3}}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{\sqrt{3}}{2}\\\end{array}\right)\), B)\(\left(\begin{array}{cc}-\frac{\sqrt{3}}{2}&\frac{1}{2}\\-\frac{1}{2}&-\frac{\sqrt{3}}{2}\\\end{array}\right)\), C)\(\left(\begin{array}{cc}-\frac{\sqrt{3}}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{\sqrt{3}}{2}\\\end{array}\right)\), D)\(\left(\begin{array}{cc}\frac{\sqrt{3}}{2}-1&\frac{1}{2}\\-\frac{1}{2}&\frac{\sqrt{3}}{2}-1\\\end{array}\right)\)
Para obter o zip que contém as instâncias deste exercício clique aqui(accoes2.nb).
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt