Vetor combinação linear em \(R^2\)
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Álgebra Linear
 - ANO: 1
 - LINGUA: pt
 - AUTOR: Ana Moura Santos e Miguel Dziergwa
 - MATERIA PRINCIPAL:
 - DESCRICAO: Coeficientes de uma combinação linear
 - DIFICULDADE: **
 - TEMPO MEDIO DE RESOLUCAO: 15 mn
 - TEMPO MAXIMO DE RESOLUCAO: 30 mn
 - PALAVRAS CHAVE: vetor combinação linear, coeficientes de uma combinação linear
 
Considere os vectores \(\pmb{v_1}\)=\(\left(\begin{array}{c}-1\\-2\\\end{array}\right)\),\(\pmb{v_2}\)=\(\left(\begin{array}{c}-3\\4\\\end{array}\right)\) e \(\pmb{v_3}\)=\(\left(\begin{array}{c}5\\0\\\end{array}\right)\) da figura seguinte:
Determine primeiro os valores dos coeficientes \(a_1\) e \(a_2\) tais que o vector \(\pmb{v_3}\) se escreve como uma combinação linear dos vectores \(\pmb{v_1}\) e \(\pmb{v_2}\), isto é, \(\pmb{v_3}\) = \(a_1 \)\(\pmb{v_1}\) +\( a_2 \) \(\pmb{v_2}\). A soma \(a_1 +a_2\) é igual a :
A) \(-3\), B) \(-9\), C) \(-2\), D )\(-8\)
Para obter o zip que contém as instâncias deste exercício clique aqui(comblinear.nb)
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt
