Teorema das matrizes invertíveis e espaços matriciais
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Álgebra Linear
- ANO: 1
- LINGUA: pt
- AUTOR: Equipa Álgebra Linear
- MATERIA PRINCIPAL:
- DESCRICAO: TMI e espaços matriciais
- DIFICULDADE: easy
- TEMPO MEDIO DE RESOLUCAO: 15 mn
- TEMPO MAXIMO DE RESOLUCAO: 30 mn
- PALAVRAS CHAVE:
Seja \( A_{n \times n} \) uma matriz quadrada e \( A^T \) a sua transposta. Indique todas as afirmações correctas.
A)a dimensão do espaço das colunas de \(\text{A}\) é igual a \(\text{n}\) sse existe um vector \(\text{b}\) de \(\mathbb{R}^n\) tal que o sistema de equações \(\text{A}\pmb{\text{x}}=\pmb{\text{b}}\) é impossível;
B)as colunas de \(\text{A}\) geram \(\mathbb{R}^n\) sse \(A^T\) não é invertível;
C)\(\text{det(}A^T\text{)$\neq$0}\) sse o sistema de equações \(\text{A}\pmb{\text{x}}=\pmb{\text{0}}\) tem infinitas soluções;
D)a dimensão do espaço das colunas de \(A^T\) é estritamente menor que \(\text{n}\) sse aplicando o método de Gauss-Jordan a \(\text{A}\), obtemos a matriz indentidade;
E)Nenhuma das anteriores
Para obter o zip que contém as instâncias deste exercício clique aqui[1]
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt