Diferenças entre edições de "Representação numa base de polinómios"

Fonte: My Solutions
Saltar para a navegação Saltar para a pesquisa
(Criou a página com "<div class="toccolours mw-collapsible mw-collapsed" style="width:420px"> '''Metadata''' <div class="mw-collapsible-content"> *CONTEXTO : Primeiro ciclo universitário *AREA:...")
 
Linha 16: Linha 16:
 
</div>
 
</div>
 
</div>
 
</div>
Seja \(W = \mathscr{L} (B) \), com \(B= \)\(\left\{2x^3+3x^2+2x-3,3x^3+2x^2+3x-4,2x^3+3x^2+2x-3\right\}\) uma base do subespaço \(W\) de \(P_3\). Se \( [p]_B= \)\(\left(\begin{array}{c}1\\4\\1\\\end{array}\right)\) é o vector de coordenadas do polinómio \(p\) nessa base, o polinómio em causa é:
+
Seja \(W = \mathscr{L} (B) \), com \(B= \)\(\left\{2x^3+3x^2+2x-3,3x^3+2x^2+3x-4,2x^3+3x^2+2x-3\right\}\) uma base do subespaço \(W\) de \(P_3\). Se \(\overset{\to}{p_B}\)=\(\left(\begin{array}{c}1\\4\\1\\\end{array}\right)\) é o vector de coordenadas do polinómio \(\overset{\to}{p}\) nessa base, o polinómio em causa é:
  
 
A)\(16x^3+14x^2+16x-22\),
 
A)\(16x^3+14x^2+16x-22\),

Revisão das 08h31min de 24 de agosto de 2016

Metadata

  • CONTEXTO : Primeiro ciclo universitário
  • AREA: Matemática
  • DISCIPLINA: Álgebra Linear
  • ANO: 1
  • LINGUA: pt
  • AUTOR: Equipa Álgebra Linear
  • MATERIA PRINCIPAL: Espaços lineares e transformações lineares
  • DESCRICAO: representacao base polinomio
  • DIFICULDADE: easy
  • TEMPO MEDIO DE RESOLUCAO: 15 mn
  • TEMPO MAXIMO DE RESOLUCAO: 30 mn
  • PALAVRAS CHAVE:

Seja \(W = \mathscr{L} (B) \), com \(B= \)\(\left\{2x^3+3x^2+2x-3,3x^3+2x^2+3x-4,2x^3+3x^2+2x-3\right\}\) uma base do subespaço \(W\) de \(P_3\). Se \(\overset{\to}{p_B}\)=\(\left(\begin{array}{c}1\\4\\1\\\end{array}\right)\) é o vector de coordenadas do polinómio \(\overset{\to}{p}\) nessa base, o polinómio em causa é:

A)\(16x^3+14x^2+16x-22\),

B)\(2x^3+2x^2+6x+2\),

C)\(-20x^3+17x^2+16x+17\),

D)\(-22x^3+16x^2+14x+16\)

Para obter o zip que contém as instâncias deste exercício clique aqui[1] Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt