Identificação gráfica do campo gradiente
Metadata
- CONTEXTO : Primeiro ciclo universitário
 - AREA: Matemática
 - DISCIPLINA: Calculo Diferencial e Integral 2
 - ANO: 1
 - LINGUA: pt
 - AUTOR: Ana Moura Santos e Miguel Dziergwa
 - MATERIA PRINCIPAL: Campos gradientes e potenciais escalares
 - DESCRICAO: Identificação gráfica do campo gradiente
 - DIFICULDADE: **
 - TEMPO MEDIO DE RESOLUCAO: 15 mn
 - TEMPO MAXIMO DE RESOLUCAO: 20 mn
 - PALAVRAS CHAVE: campo vetorial, representação gráfica do campo gradiente
 
Na figura está representado o gráfico duma função escalar nas variáveis \(x\) e \(y\), para \( -2 \leq x \leq 2\) e \(-2 \leq y \leq 2\).
Sabendo que o comprimento de cada seta com origem no ponto \(\left(\begin{array}{c}x\\y\\\end{array}\right)\) é proporcional à norma do vetor gradiente nesse ponto, indique qual poderá ser a figura que corresponde ao campo gradiente da função, isto é\(\begin{array}{cccc}\text{$\nabla$f:}&\mathbb{R}^2&\to&\mathbb{R}^2\\\text{}&\left(\begin{array}{c}x\\y\\\end{array}\right)&|\rightarrow&\left(\begin{array}{c}\frac{\text{$\partial$f}}{\text{$\partial$x}}\\\frac{\text{$\partial$f}}{\text{$\partial$y}}\\\end{array}\right)\\\end{array}\)
A) \(4\)
B) \(1\)
C) \(2\)
D) \(3\)
Para obter o zip que contém as instâncias deste exercício clique aqui[1]
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt

