Método da potência
Saltar para a navegação
Saltar para a pesquisa
Metadata
- CONTEXTO : Primeiro ciclo universitário
- AREA: Matemática
- DISCIPLINA: Álgebra Linear
- ANO: 1
- LINGUA: pt
- AUTOR: Ana Moura Santos e Miguel Dziergwa
- MATERIA PRINCIPAL: Métodos numéricos
- DESCRICAO: Método da potência
- DIFICULDADE: ***
- TEMPO MEDIO DE RESOLUCAO: 15 mn
- TEMPO MAXIMO DE RESOLUCAO: 25 mn
- PALAVRAS CHAVE: matriz tridiagonal, valor próprio dominante, vetor próprio dominante,aproximação inicial, iterações
Considere a matriz 5x5 tridiagonal com entradas \( a_{ii}= \) \(2\), \( i=1,2,...,5 \) ; \( a_{i,i+1} = a_{i+1,i} = \) \(1\) , \( i=1,...,4 \). Sabendo que a aproximação inicial \(\pmb{x_0}\) \(=(0.5,0.8,1,0.8,0.5) \) está quase alinhada com o vetor próprio dominante da matriz, calcule até à quinta iterada o valor próprio dominante com pelo menos 2 casas decimais.
Para obter o zip que contém as instâncias deste exercício clique aqui[1]
Se deseja obter o código fonte que gera os exercícios contacte miguel.dziergwa@ist.utl.pt